Search results for "Perturbation Theory"
showing 10 items of 584 documents
Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit
2019
Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.
Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved a…
2008
The theory and implementation of approximate coupled-cluster (CC), in particular approximate CC singles, doubles, triples, and quadruples methods, are discussed for general single-determinant reference functions. While the extension of iterative approximate models to the non-Hartree-Fock case is straightforward, the generalization of perturbative approaches is not trivial. In contrast to the corresponding perturbative triples methods, there are additional terms required for non-Hartree-Fock reference functions, and there are several possibilities to derive approximations to these terms. As it turns out impossible to develop an approach that is consistent with the canonical Hartree-Fock-base…
A theoretical study of the 1B2u and 1B1u vibronic bands in benzene
2000
The two lowest bands, 1B2u and 1B1u, of the electronic spectrum of the benzene molecule have been studied theoretically using a new method to compute vibronic excitation energies and intensities. The complete active space (CAS) self-contained field (SCF) method (with six active π-orbitals) was used to compute harmonic force field for the ground state and the 1B2u and 1B1u electronic states. A linear approximation has been used for the transition dipole as a function of the nuclear displacement coordinates. Derivatives of the transition dipole were computed using a variant of the CASSCF state interaction method. Multiconfigurational second-order perturbation theory (CASPT2) was used to obtai…
Asymptotic potentials and rate constants in the adiabatic capture centrifugal sudden approximation for X + OH(X-2 Pi) -> OX + H(S-2) reactions where …
2012
International audience; New long-range multipolar coefficients for the X + OH(X-2 Pi) interactions, where X = O(P-3), S(P-3) and N(S-4), are given here. They have been evaluated on the basis or monomer properties of the atoms and OH such as the dipole and quadrupole moments, and the static and dynamic polarizabilities. Each matrix element of the 18 x 18 (8 x 8 for N + OH) quasi-degenerate asymptotic potentials has been built up by means of the perturbation theory up to second order including or not the fine-structure of O, S and OH. The adiabatic potentials, obtained after diagonalization of the full matrix, show many crossings and complex behaviors near the asymptotes. Using the entrance c…
Extraordinary tuning of a nanocavity by a near-field probe
2011
Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.
Dark coupling and gauge invariance
2010
We study a coupled dark energy–dark matter model in which the energymomentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Dark coupling
2009
30 pages, 10 figures, 3 tables.-- Pre-print archive.
Computation of anthropogenic sulphate aerosol forcing using radiative perturbation theory
1994
The radiative forcing of the climate by anthropogenic aerosols has been a matter of some concern for many years now, especially in the northern hemisphere. Recently in these pages, Charlson et al. attempted to quantify this forcing. However, that calculation involved relatively crude optical and radiative transfer models. In this paper, we use a far more detailed sulphate optical model, and employ radiative perturbation theory (a technique ideally suited to answering questions of this sort) to repeat this radiation calculation. We obtain results which are similar to Charlson et al., provided that proper allowance is made for the effects of humidity. DOI: 10.1034/j.1600-0889.1994.00003.x
A Theoretical Study of the Low-Lying Excited States of trans- and cis-Urocanic Acid
1999
A multiconfigurational second-order perturbation theory (CASPT2) study of the lowest lying states in the gas-phase electronic spectra of trans- and cis-urocanic acid is presented. Geometries of both isomers have been optimized at the MP2/6-31G(d) and π-CASSCF/ANO-L(4s3p1d,2s) levels of theory. The geometries are found to differ considerably between the two levels. The vertical and 0−0 excitation spectra were calculated for each isomer. Both singlet and triplet states are described for each, including the lowest lying ππ* excitations and the nOπ* excitations. Remarkably, in the trans spectrum, it is found that the nOπ* state has a higher vertical excitation energy than the lowest ππ* (5.12 v…
Many-body perturbation theory calculations using the yambo code
2019
Abstract yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo’s capabilities include the calculation of linear response quantities (both independent-particle and including electron–hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron–phonon i…